Calculadora de impedância de PCB

Calcule a impedância característica e diferencial da PCB para microstrip e stripline. Suporta pares acoplados por borda com fórmulas precisas e diagramas visuais.

1. Select Trace Type

2. Enter Parameters

mils
mils
mils

 

Microstrip Diagram

WHTεr

Formula

Zo87εr+1.41ln(5.98H0.8W+T)

Stripline Diagram

WBTεr

Formula

Zo60εrln(1.9B0.8W+T)

Edge-Coupled Microstrip Diagram

WHS

Formula

Zdiff2Zo(1-0.347e-2.9SH)

Edge-Coupled Stripline Diagram

WBS

Formula

Zdiff2Zo(1-0.748e-1.5SB)

3. Results

Characteristic Impedance (Zo)-- Ω

Disclaimer: These calculations are for estimation purposes only. For final designs, always use professional simulation software.

Guia de uso

  1. Selecione o tipo de
    traço Escolha entre quatro configurações de traço com ícones visuais:
    • Microstrip: Traço único na camada externa sobre um plano de aterramento.
    • Stripline: Traço incorporado entre dois planos de terra.
    • Microstrip acoplado pela borda: Par diferencial na camada externa.
    • Stripline acoplado à borda: par diferencial incorporado entre planos de terra.
  2. Insira os parâmetros
    • Constante dielétrica (εr): Permissividade elétrica do material (por exemplo, 4,4 para FR-4).
    • Espessura do traço (T): Espessura do cobre em mils (1 oz = 1,37 mils).
    • Largura do traço (W): Largura do condutor em mils.
    • Altura do substrato (H)/Separação do plano (B): Distância até o(s) plano(s) de terra.
    • Espaçamento do traço (S): Aparece para pares diferenciais; distância entre os traços.
  3. Ver resultados
    • Impedância característica (Zo): Para traços de extremidade única.
    • Impedância diferencial (Zdiff): Para pares acoplados, exibida automaticamente para tipos acoplados por borda.

Explicações sobre a fórmula

Impedância de microfita de extremidade única

Z 0 = 87 ε r + 1.41 ln ( 5.98 H 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of the microstrip line (Ω)
    • Key parameter for single-ended signal integrity
    • Typical target: 50Ω for RF, 60-70Ω for digital signals
  • εr: Substrate dielectric constant
    • FR-4: 4.2-4.6 @ 1MHz
    • Rogers RO3003: 3.0 @ 10GHz
  • H: Substrate height from trace to ground plane (mils)
    • Also known as dielectric height
    • Thinner H increases Z0 for same trace width
  • W: Trace width (mils)
    • Wider traces lower Z0 linearly
    • Minimum width limited by manufacturing (typically ≥4mils)
  • T: Trace thickness (mils)
    • 1oz copper: 1.37mils (35μm)
    • 2oz copper: 2.74mils (70μm)

Impedância simétrica da linha de fita

Z 0 = 60 ε r ln ( 1.9 B 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of stripline (Ω)
    • Enclosed between two ground planes for better shielding
    • Typical target: 50Ω for controlled impedance designs
  • εr: Dielectric constant of core material
    • High-frequency materials: εr stability critical
    • Example: Isola FR408HR: εr=3.48 @ 10GHz
  • B: Total distance between ground planes (mils)
    • Also called "plane separation" or "stackup height"
    • B = 2H for symmetric stripline with centered trace
  • W: Trace width (mils)
    • Narrower W increases Z0 in stripline designs
    • Width-to-thickness ratio affects field distribution
  • T: Trace thickness (mils)
    • Thicker traces reduce DC resistance but impact Z0 slightly
    • Considered in denominator for geometric correction

Impedância diferencial de microfita acoplada por borda

Z diff = 2 Z 0 ( 1 0.347 e 2.9 S H )
Variables:
  • Zdiff: Differential impedance of coupled microstrip (Ω)
    • Typical targets: 100Ω (USB), 90Ω (Ethernet)
    • Depends on both single-ended Z0 and coupling factor
  • Z0: Single-ended microstrip impedance (Ω)
    • Base impedance of each trace in the pair
    • Assumes infinite ground plane for isolation
  • S: Spacing between coupled traces (mils)
    • Critical for crosstalk and differential impedance control
    • S/H ratio determines exponential coupling factor
    • Common rule: S ≥ 2W for minimal crosstalk
  • H: Substrate height (mils)
    • Affects field penetration into substrate
    • Lower H increases electromagnetic coupling between traces

Impedância diferencial de linha de fita acoplada por borda

Z diff = 2 Z 0 ( 1 0.748 e 1.5 S B )
Variables:
  • Zdiff: Differential impedance of coupled stripline (Ω)
    • Preferred for high-speed signals requiring low EMI
    • Typical value: 100Ω for DDR4 differential pairs
  • Z0: Single-ended stripline impedance (Ω)
    • Impedance of each trace when isolated
    • Calculated using symmetric stripline formula
  • S: Spacing between coupled traces (mils)
    • Smaller S increases differential impedance due to coupling
    • Exponential term: e-1.5S/B models field overlap
  • B: Plane separation (mils)
    • Total distance between top and bottom ground planes
    • B = 2H for centered traces in symmetric stackups
    • Larger B reduces coupling effect for same trace spacing

Perguntas frequentes

O que é impedância característica (Z0)?
Characteristic impedance is the resistance a signal "sees" as it travels along a transmission line, determined by trace geometry and material properties. A mismatch in Z0 causes signal reflections, degrading integrity. For example, a microstrip with W = 10 mils, H = 6 mils, and εr = 4.4 has:
Z0 = 87 r + 1.41) · ln( 5.98 · H 0.8 · W + T ) ≈ 50 Ω
  • Microstrip: Single trace on the surface with a ground plane below.
    • Advantages: Easy to route, suitable for low-frequency designs.
    • Disadvantages: Radiates EMI, sensitive to board flexing.
  • Stripline: Trace sandwiched between two ground planes.
    • Advantages: Better EMI shielding, stable at high frequencies.
    • Disadvantages: Requires inner layers, more complex to route.
In edge-coupled pairs, increased spacing S reduces electromagnetic coupling, increasing differential impedance Zdiff. For microstrips:
Zdiff = 2 · Z0 · (1 − 0.347 · e−2.9S/H)
  • When S = H: Zdiff ≈ 2Z0 · 0.76
  • When S = 3H: Zdiff ≈ 2Z0 · 0.97
ParameterSingle-Ended (Z0)Differential (Zdiff)
DefinitionImpedance from trace to groundImpedance between two coupled traces
Typical Values50Ω (RF), 60-70Ω (digital)100Ω (USB), 90Ω (Ethernet)
ApplicationSingle-ended signals (e.g., GPIO)Differential signals (e.g., LVDS, PCIe)
Design FocusTrace width and ground plane distanceTrace spacing and coupling coefficient

Differential pairs offer better noise immunity because the differential signal cancels common-mode noise. For example, USB 3.0 requires with and on a 6-mil FR-4 substrate.

  • Microstrip: Mais fácil de rotear, mas irradia EMI e é sensível à curvatura da placa.
  • Stripline: Melhor blindagem, menos interferência e mais estável em altas frequências, mas requer camadas internas.
A higher εr increases the effective permittivity of the transmission line, decreasing Z0. For example:
  • FR-4 (εr = 4.4): Z0 ≈ 50 Ω for W = 10 mils, H = 6 mils
  • Rogers RO3003 (εr = 3.0): Z0 ≈ 58 Ω for the same geometry
Key Dielectric Properties
  • εr: Relative permittivity, affects field confinement.
    • High-frequency materials: εr stability is critical
    • Example: Isola FR408HR: εr = 3.48 @ 10GHz
  • Loss Tangent (Df): Energy loss factor, impacts signal attenuation.
    • FR-4: Df ≈ 0.02 @ 1MHz
    • Rogers RO4350B: Df = 0.004 @ 10GHz
Results are based on IPC-standard approximations. Real-world factors like:
  • Trace roughness (e.g., 2.1μm RMS)
  • Solder mask thickness (0.5-1.0mils)
  • Manufacturing tolerances (±10% for trace width)
  • Dielectric thickness variation (±5%)

Ferramentas relacionadas para PCB

Rolar para cima

Instant Quote