Kapazität eines zylindrischen Kondensators

Berechnen Sie die Kapazität eines zylindrischen Kondensators mit unserem interaktiven Tool. Entdecken Sie die Formel, die Ableitungsschritte und Anwendungsbeispiele aus der Praxis, wie beispielsweise Koaxialkabel.

Capacitance Calculator

Calculated Capacitance:

8.02 pF

Relationship Visualizer

What is a Cylindrical Capacitor?

A cylindrical capacitor is a fundamental electrical component used to store energy in an electric field. It consists of two concentric conducting cylinders separated by a dielectric material. The inner cylinder has a radius a, and the outer cylinder has a radius b. Both cylinders have a length L.

Its ability to store charge, its capacitance (C), depends entirely on its geometry and the dielectric material between the cylinders. The relationship is described by the formula:

C = 2πεLln(b/a)

Explore the diagram to see how these components fit together. Hover over each label to highlight the corresponding part of the capacitor.

a b

The Physics Behind It

The formula for capacitance isn't arbitrary; it's derived from fundamental principles of electromagnetism. Follow the steps below to see how we arrive at the final equation using Gauss's Law.

Step 1: Find the Electric Field (E) using Gauss's Law

First, we imagine a Gaussian surface (a cylinder with radius r where a < r < b) and apply Gauss's Law. This allows us to find the electric field E at any point between the conducting cylinders. The law relates the electric flux through a closed surface to the charge enclosed.

Step 2: Calculate Potential Difference (V)

Next, we find the potential difference (voltage) V between the inner and outer cylinders by integrating the electric field E along a path from radius a to b. The potential difference is the work done per unit charge to move a charge between the two cylinders.

Step 3: Use the Definition of Capacitance (C = Q/V)

Finally, we use the fundamental definition of capacitance: the ratio of the magnitude of the charge Q on one conductor to the potential difference V between them. By substituting our expression for V from Step 2, the charge Q cancels out, leaving us with the final formula that depends only on the capacitor's physical properties.

Real-World Applications

The principles of the cylindrical capacitor are not just academic. They are critical to the technology we use every day.

Coaxial Cables

The most common application is the coaxial cable, used for transmitting high-frequency signals for cable television, internet, and other data communications. The cable's central wire acts as the inner cylinder, and the woven mesh shield acts as the outer cylinder. The material separating them is the dielectric. The cable's capacitance per unit length is a crucial characteristic that determines its performance, affecting signal integrity and impedance matching. Understanding this capacitance is essential for designing communication systems that minimize signal loss and distortion.

Built for educational and developmental purposes for electronics enthusiasts and students.

Verwandte PCB-Tools

3D visualization of a notch filter frequency response curve showing specific frequency rejection

Notch-Filter-Rechner

Berechnen Sie die Bauteilwerte für passive Twin-T- und RLC-Kerbfilter. Enthält die Abstimmung der Mittenfrequenz, die Analyse des Q-Faktors, Schaltpläne und

Weiterlesen »
3D technical visualization of a resonant frequency peak in an RLC circuit with inductor and capacitor components

RLC-Resonanzfrequenz-Rechner

Berechnen Sie die Resonanzfrequenz, den Q-Faktor und die Bandbreite für serielle und parallele RLC-Schaltungen. Enthält ein interaktives Frequenzgangdiagramm und Kernformeln.

Weiterlesen »
3D visualization of a bandpass filter frequency response showing a specific range of signal transmission

Bandpassfilter-Rechner

Interaktiver RLC-Bandpassfilter-Designer. Berechnen Sie die Mittenfrequenz, Bandbreite und den Q-Faktor mit Echtzeit-Bode-Diagrammen und Schaltplänen.

Weiterlesen »
3D visualization of the RC time constant showing an exponential charging curve and the 63.2 percent mark

Zeitkonstantenrechner

Berechnen Sie die Zeitkonstanten (τ) von RC- und RL-Schaltungen sowie die 5τ-Werte. Visualisieren Sie Lade- und Entladekurven mit unserem interaktiven

Weiterlesen »
Nach oben scrollen

Instant Quote