Calculateur d'impédance PCB

Calculez les caractéristiques et l'impédance différentielle des circuits imprimés pour les microbandes et les lignes à ruban. Prend en charge les paires couplées par les bords avec des formules précises et des schémas visuels.

1. Select Trace Type

2. Enter Parameters

mils
mils
mils

 

Microstrip Diagram

WHTεr

Formula

Zo87εr+1.41ln(5.98H0.8W+T)

Stripline Diagram

WBTεr

Formula

Zo60εrln(1.9B0.8W+T)

Edge-Coupled Microstrip Diagram

WHS

Formula

Zdiff2Zo(1-0.347e-2.9SH)

Edge-Coupled Stripline Diagram

WBS

Formula

Zdiff2Zo(1-0.748e-1.5SB)

3. Results

Characteristic Impedance (Zo)-- Ω

Disclaimer: These calculations are for estimation purposes only. For final designs, always use professional simulation software.

Usage Guide

  1. Sélectionner le type de trace
    Choisissez parmi quatre configurations de trace avec des icônes visuelles :
    • Microbande : trace unique sur la couche externe au-dessus d'un plan de masse.
    • Stripline : trace intégrée entre deux plans de masse.
    • Microbande à couplage latéral : paire différentielle sur la couche externe.
    • Ligne à ruban couplée par les bords : paire différentielle intégrée entre les plans de masse.
  2. Entrer les paramètres
    • Constante diélectrique (εr) : permittivité électrique du matériau (par exemple, 4,4 pour le FR-4).
    • Épaisseur de la piste (T) : épaisseur du cuivre en millièmes de pouce (1 oz = 1,37 millièmes de pouce).
    • Largeur de trace (W) : largeur du conducteur en mils.
    • Hauteur du substrat (H)/Séparation des plans (B) : distance par rapport au(x) plan(s) de masse.
    • Espacement des pistes (S) : apparaît pour les paires différentielles ; distance entre les pistes.
  3. Afficher les résultats
    • Impédance caractéristique (Zo) : pour les traces asymétriques.
    • Impédance différentielle (Zdiff) : pour les paires couplées, affichée automatiquement pour les types à couplage de bord.

Explications de la formule

Impédance microbande à extrémité unique

Z 0 = 87 ε r + 1.41 ln ( 5.98 H 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of the microstrip line (Ω)
    • Key parameter for single-ended signal integrity
    • Typical target: 50Ω for RF, 60-70Ω for digital signals
  • εr: Substrate dielectric constant
    • FR-4: 4.2-4.6 @ 1MHz
    • Rogers RO3003: 3.0 @ 10GHz
  • H: Substrate height from trace to ground plane (mils)
    • Also known as dielectric height
    • Thinner H increases Z0 for same trace width
  • W: Trace width (mils)
    • Wider traces lower Z0 linearly
    • Minimum width limited by manufacturing (typically ≥4mils)
  • T: Trace thickness (mils)
    • 1oz copper: 1.37mils (35μm)
    • 2oz copper: 2.74mils (70μm)

Impédance symétrique de ligne triplaque

Z 0 = 60 ε r ln ( 1.9 B 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of stripline (Ω)
    • Enclosed between two ground planes for better shielding
    • Typical target: 50Ω for controlled impedance designs
  • εr: Dielectric constant of core material
    • High-frequency materials: εr stability critical
    • Example: Isola FR408HR: εr=3.48 @ 10GHz
  • B: Total distance between ground planes (mils)
    • Also called "plane separation" or "stackup height"
    • B = 2H for symmetric stripline with centered trace
  • W: Trace width (mils)
    • Narrower W increases Z0 in stripline designs
    • Width-to-thickness ratio affects field distribution
  • T: Trace thickness (mils)
    • Thicker traces reduce DC resistance but impact Z0 slightly
    • Considered in denominator for geometric correction

Impédance différentielle microbande couplée par les bords

Z diff = 2 Z 0 ( 1 0.347 e 2.9 S H )
Variables:
  • Zdiff: Differential impedance of coupled microstrip (Ω)
    • Typical targets: 100Ω (USB), 90Ω (Ethernet)
    • Depends on both single-ended Z0 and coupling factor
  • Z0: Single-ended microstrip impedance (Ω)
    • Base impedance of each trace in the pair
    • Assumes infinite ground plane for isolation
  • S: Spacing between coupled traces (mils)
    • Critical for crosstalk and differential impedance control
    • S/H ratio determines exponential coupling factor
    • Common rule: S ≥ 2W for minimal crosstalk
  • H: Substrate height (mils)
    • Affects field penetration into substrate
    • Lower H increases electromagnetic coupling between traces

Impédance différentielle à ligne triplaque couplée par les bords

Z diff = 2 Z 0 ( 1 0.748 e 1.5 S B )
Variables:
  • Zdiff: Differential impedance of coupled stripline (Ω)
    • Preferred for high-speed signals requiring low EMI
    • Typical value: 100Ω for DDR4 differential pairs
  • Z0: Single-ended stripline impedance (Ω)
    • Impedance of each trace when isolated
    • Calculated using symmetric stripline formula
  • S: Spacing between coupled traces (mils)
    • Smaller S increases differential impedance due to coupling
    • Exponential term: e-1.5S/B models field overlap
  • B: Plane separation (mils)
    • Total distance between top and bottom ground planes
    • B = 2H for centered traces in symmetric stackups
    • Larger B reduces coupling effect for same trace spacing

Foire aux questions

Qu'est-ce que l'impédance caractéristique (Z0) ?
Characteristic impedance is the resistance a signal "sees" as it travels along a transmission line, determined by trace geometry and material properties. A mismatch in Z0 causes signal reflections, degrading integrity. For example, a microstrip with W = 10 mils, H = 6 mils, and εr = 4.4 has:
Z0 = 87 r + 1.41) · ln( 5.98 · H 0.8 · W + T ) ≈ 50 Ω
  • Microstrip: Single trace on the surface with a ground plane below.
    • Advantages: Easy to route, suitable for low-frequency designs.
    • Disadvantages: Radiates EMI, sensitive to board flexing.
  • Stripline: Trace sandwiched between two ground planes.
    • Advantages: Better EMI shielding, stable at high frequencies.
    • Disadvantages: Requires inner layers, more complex to route.
In edge-coupled pairs, increased spacing S reduces electromagnetic coupling, increasing differential impedance Zdiff. For microstrips:
Zdiff = 2 · Z0 · (1 − 0.347 · e−2.9S/H)
  • When S = H: Zdiff ≈ 2Z0 · 0.76
  • When S = 3H: Zdiff ≈ 2Z0 · 0.97
ParameterSingle-Ended (Z0)Differential (Zdiff)
DefinitionImpedance from trace to groundImpedance between two coupled traces
Typical Values50Ω (RF), 60-70Ω (digital)100Ω (USB), 90Ω (Ethernet)
ApplicationSingle-ended signals (e.g., GPIO)Differential signals (e.g., LVDS, PCIe)
Design FocusTrace width and ground plane distanceTrace spacing and coupling coefficient

Differential pairs offer better noise immunity because the differential signal cancels common-mode noise. For example, USB 3.0 requires with and on a 6-mil FR-4 substrate.

  • Microbande : plus facile à acheminer, mais émet des interférences électromagnétiques et est sensible à la flexion de la carte.
  • Ligne triplaque : Meilleur blindage, moins de diaphonie et plus stable à hautes fréquences, mais nécessite des couches internes.
A higher εr increases the effective permittivity of the transmission line, decreasing Z0. For example:
  • FR-4 (εr = 4.4): Z0 ≈ 50 Ω for W = 10 mils, H = 6 mils
  • Rogers RO3003 (εr = 3.0): Z0 ≈ 58 Ω for the same geometry
Key Dielectric Properties
  • εr: Relative permittivity, affects field confinement.
    • High-frequency materials: εr stability is critical
    • Example: Isola FR408HR: εr = 3.48 @ 10GHz
  • Loss Tangent (Df): Energy loss factor, impacts signal attenuation.
    • FR-4: Df ≈ 0.02 @ 1MHz
    • Rogers RO4350B: Df = 0.004 @ 10GHz
Results are based on IPC-standard approximations. Real-world factors like:
  • Trace roughness (e.g., 2.1μm RMS)
  • Solder mask thickness (0.5-1.0mils)
  • Manufacturing tolerances (±10% for trace width)
  • Dielectric thickness variation (±5%)

Liées PCB Outils

Retour en haut

Instant Quote