Signal-Rausch-Verhältnis (SNR) Rechner

Verwenden Sie diesen leistungsstarken, interaktiven Rechner, um das Signal-Rausch-Verhältnis (SNR) Ihrer Daten zu messen. Egal, ob Sie im Bereich Audio, Bildverarbeitung oder Kommunikation tätig sind – verstehen Sie, was Ihr SNR bedeutet und wie Sie es verbessern können.

Enter your signal and noise values to get instant results in both linear and decibel forms.

SNR (Linear Ratio)

100.00

SNR (Decibels)

20.00 dB

What is Signal-to-Noise Ratio (SNR)?

Signal-to-Noise Ratio (SNR) is a fundamental metric used in science and engineering to compare the level of a desired signal to the level of background noise. It is defined as the ratio of signal power to noise power, often expressed in decibels (dB). A higher SNR indicates a clearer, higher-quality signal, while a lower SNR suggests that the signal is being obscured by noise.

Common SNR Formulas

The formula you use depends on the type of signal you are measuring (power vs. voltage).

Linear Ratio Formula

This is the simplest form, expressing the ratio directly.

$$ SNR = P_{signal} / P_{noise} $$

Decibel (dB) Formula (Power)

Use this formula when working with power measurements (e.g., Watts).

$$ SNR(dB) = 10 \cdot \log_{10}(P_{signal} / P_{noise}) $$

Decibel (dB) Formula (Voltage)

Use this formula for voltage measurements (e.g., Volts), as power is proportional to voltage squared.

$$ SNR(dB) = 20 \cdot \log_{10}(V_{signal} / V_{noise}) $$

Where is SNR Used?

  • Audio Engineering: Used to measure the quality of audio recordings and sound systems. A high SNR means less hiss and background hum.
  • Digital Imaging: In photography and medical imaging, SNR measures the quality of a sensor's output. A higher SNR results in a clearer, less grainy image.
  • Telecommunications: Used to determine the reliability of a signal transmitted over a network. A high SNR is crucial for stable Wi-Fi, radio, and cellular connections.
  • Scientific Measurement: Used to evaluate the precision of lab instruments and experiments by quantifying how much of the measured value is true signal vs. random fluctuation.

What is a Good SNR?

The definition of a "good" SNR is highly dependent on the application. Here are some common benchmarks:

ApplicationSNR Range (dB)Interpretation
Wireless Communications10-15 dBPoor/Unreliable connection
25-40 dBGood/Stable connection
High-fidelity Audio> 90 dBExcellent, professional quality
Digital Photography~ 30 dBAverage quality
> 40 dBExcellent quality, low noise

Common Mistakes & Pitfalls

  • Units Mismatch: A common error is using different units for the signal and noise values. Always ensure both values are in the same units (e.g., Watts and Watts, not Watts and milliwatts) before calculating.
  • Using the Wrong Formula: Remember that the decibel formulas for power and voltage are different. Power calculations use 10 * log10, while voltage calculations use 20 * log10.
  • Ignoring Hidden Noise Sources: Many systems have multiple noise sources (e.g., thermal noise, shot noise). Failing to account for all of them will result in an inaccurate SNR value.

Build for educational and development purpose.

Verwandte PCB-Tools

A 3D isometric render of two telecom towers on a curved blue Earth segment, connected by a glowing straight line of sight with floating mathematical symbols on a white background.

LOS-Entfernungsformel

Berechnen Sie die Sichtverbindung (LOS) mit unserem kostenlosen Tool. Lernen Sie die Formeln, die Auswirkungen der Erdkrümmung und die atmosphärischen

Weiterlesen »
3D illustration of a line-of-sight path between two points over a curved Earth horizon

Sichtlinienrechner

Berechnen Sie den Funkhorizont und bewerten Sie die Signalwegfreiheit für drahtlose Verbindungen. Dieses Tool hilft Ingenieuren, Technikern und HF-Planern dabei,

Weiterlesen »
3D isometric illustration of two communication towers on blue mountains with a glowing neon line of sight and red obstruction pillars on a white background.

Geländehindernisprofil

Analysieren Sie Signalwege mit unserem interaktiven Terrain Obstruction Profile. Visualisieren Sie Sichtlinien, Fresnel-Zonen und Topografie für die Telekommunikations- und Luftfahrtplanung.

Weiterlesen »
3D illustration of standing wave patterns and reflected power for VSWR calculation in RF systems

VSWR-Rechner

Berechnen Sie VSWR, Rückflussdämpfung und Reflexionskoeffizient anhand von Leistung, Impedanz oder Gamma. Enthält eine Umrechnungstabelle, Formeln und Leitfäden zur HF-Technik.

Weiterlesen »
3D illustration showing radio wave propagation and power gain between two antennas based on the Friis equation.

Friis-Übertragungsrechner

Berechnen Sie die empfangene Leistung, Entfernung und Antennenverstärkung mit unserem Friis-Übertragungsrechner. Enthält Freiraumdämpfung und logarithmische Formeln für das HF-Design.

Weiterlesen »
3D illustration of sine waves with different frequencies and measured wavelengths for RF engineering

Wellenlängenrechner

Wandeln Sie Frequenzen in Wellenlängen, Wellenlängen in Frequenzen oder Energie in Wellenlängen um. Zu den Funktionen gehören die Visualisierung des

Weiterlesen »
Nach oben scrollen

Instant Quote