PCB-Impedanzrechner

Berechnen Sie die PCB-Charakteristik und die Differenzimpedanz für Mikrostreifen und Streifenleitungen. Unterstützt kantenkopplende Paare mit präzisen Formeln und visuellen Diagrammen.

1. Select Trace Type

2. Enter Parameters

mils
mils
mils

 

Microstrip Diagram

WHTεr

Formula

Zo87εr+1.41ln(5.98H0.8W+T)

Stripline Diagram

WBTεr

Formula

Zo60εrln(1.9B0.8W+T)

Edge-Coupled Microstrip Diagram

WHS

Formula

Zdiff2Zo(1-0.347e-2.9SH)

Edge-Coupled Stripline Diagram

WBS

Formula

Zdiff2Zo(1-0.748e-1.5SB)

3. Results

Characteristic Impedance (Zo)-- Ω

Disclaimer: These calculations are for estimation purposes only. For final designs, always use professional simulation software.

Gebrauchsanweisung

  1. Spurtyp
    auswählen Wählen Sie aus vier Spurkonfigurationen mit visuellen Symbolen:
    • Mikrostreifen: Einzelnes Trace auf der äußeren Schicht über einer Grundplatte.
    • Streifenleitung: Leiterbahn zwischen zwei Grundflächen eingebettet.
    • Kantengekoppelte Mikrostreifenleitung: Differentialpaar auf der äußeren Schicht.
    • Kantengekoppelte Streifenleitung: Differenzpaar zwischen Grundflächen eingebettet.
  2. Parameter eingeben
    • Dielektrizitätskonstante (εr): Elektrische Permittivität des Materials (z. B. 4,4 für FR-4).
    • Leiterbahnstärke (T): Kupferstärke in Mil (1 oz = 1,37 Mil).
    • Leiterbahnbreite (W): Leiterbahnbreite in Mil.
    • Substrathöhe (H)/Ebenenabstand (B): Abstand zur/zu den Grundebenen.
    • Spur-Abstand (S): Erscheint bei Differentialpaaren; Abstand zwischen den Spuren.
  3. Ergebnisse anzeigen
    • Charakteristische Impedanz (Zo): Für Single-Ended-Leiterbahnen.
    • Differenzimpedanz (Zdiff): Für gekoppelte Paare, wird automatisch für kantengekoppelte Typen angezeigt.

Formel-Erläuterungen

Einseitig angeschlossene Mikrostreifenimpedanz

Z 0 = 87 ε r + 1.41 ln ( 5.98 H 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of the microstrip line (Ω)
    • Key parameter for single-ended signal integrity
    • Typical target: 50Ω for RF, 60-70Ω for digital signals
  • εr: Substrate dielectric constant
    • FR-4: 4.2-4.6 @ 1MHz
    • Rogers RO3003: 3.0 @ 10GHz
  • H: Substrate height from trace to ground plane (mils)
    • Also known as dielectric height
    • Thinner H increases Z0 for same trace width
  • W: Trace width (mils)
    • Wider traces lower Z0 linearly
    • Minimum width limited by manufacturing (typically ≥4mils)
  • T: Trace thickness (mils)
    • 1oz copper: 1.37mils (35μm)
    • 2oz copper: 2.74mils (70μm)

Symmetrische Streifenleitungsimpedanz

Z 0 = 60 ε r ln ( 1.9 B 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of stripline (Ω)
    • Enclosed between two ground planes for better shielding
    • Typical target: 50Ω for controlled impedance designs
  • εr: Dielectric constant of core material
    • High-frequency materials: εr stability critical
    • Example: Isola FR408HR: εr=3.48 @ 10GHz
  • B: Total distance between ground planes (mils)
    • Also called "plane separation" or "stackup height"
    • B = 2H for symmetric stripline with centered trace
  • W: Trace width (mils)
    • Narrower W increases Z0 in stripline designs
    • Width-to-thickness ratio affects field distribution
  • T: Trace thickness (mils)
    • Thicker traces reduce DC resistance but impact Z0 slightly
    • Considered in denominator for geometric correction

Kantengebundene Mikrostreifen-Differenzimpedanz

Z diff = 2 Z 0 ( 1 0.347 e 2.9 S H )
Variables:
  • Zdiff: Differential impedance of coupled microstrip (Ω)
    • Typical targets: 100Ω (USB), 90Ω (Ethernet)
    • Depends on both single-ended Z0 and coupling factor
  • Z0: Single-ended microstrip impedance (Ω)
    • Base impedance of each trace in the pair
    • Assumes infinite ground plane for isolation
  • S: Spacing between coupled traces (mils)
    • Critical for crosstalk and differential impedance control
    • S/H ratio determines exponential coupling factor
    • Common rule: S ≥ 2W for minimal crosstalk
  • H: Substrate height (mils)
    • Affects field penetration into substrate
    • Lower H increases electromagnetic coupling between traces

Kantengebundene Streifenleitung mit differentieller Impedanz

Z diff = 2 Z 0 ( 1 0.748 e 1.5 S B )
Variables:
  • Zdiff: Differential impedance of coupled stripline (Ω)
    • Preferred for high-speed signals requiring low EMI
    • Typical value: 100Ω for DDR4 differential pairs
  • Z0: Single-ended stripline impedance (Ω)
    • Impedance of each trace when isolated
    • Calculated using symmetric stripline formula
  • S: Spacing between coupled traces (mils)
    • Smaller S increases differential impedance due to coupling
    • Exponential term: e-1.5S/B models field overlap
  • B: Plane separation (mils)
    • Total distance between top and bottom ground planes
    • B = 2H for centered traces in symmetric stackups
    • Larger B reduces coupling effect for same trace spacing

Häufig gestellte Fragen

Was ist die charakteristische Impedanz (Z0)?
Characteristic impedance is the resistance a signal "sees" as it travels along a transmission line, determined by trace geometry and material properties. A mismatch in Z0 causes signal reflections, degrading integrity. For example, a microstrip with W = 10 mils, H = 6 mils, and εr = 4.4 has:
Z0 = 87 r + 1.41) · ln( 5.98 · H 0.8 · W + T ) ≈ 50 Ω
  • Microstrip: Single trace on the surface with a ground plane below.
    • Advantages: Easy to route, suitable for low-frequency designs.
    • Disadvantages: Radiates EMI, sensitive to board flexing.
  • Stripline: Trace sandwiched between two ground planes.
    • Advantages: Better EMI shielding, stable at high frequencies.
    • Disadvantages: Requires inner layers, more complex to route.
In edge-coupled pairs, increased spacing S reduces electromagnetic coupling, increasing differential impedance Zdiff. For microstrips:
Zdiff = 2 · Z0 · (1 − 0.347 · e−2.9S/H)
  • When S = H: Zdiff ≈ 2Z0 · 0.76
  • When S = 3H: Zdiff ≈ 2Z0 · 0.97
ParameterSingle-Ended (Z0)Differential (Zdiff)
DefinitionImpedance from trace to groundImpedance between two coupled traces
Typical Values50Ω (RF), 60-70Ω (digital)100Ω (USB), 90Ω (Ethernet)
ApplicationSingle-ended signals (e.g., GPIO)Differential signals (e.g., LVDS, PCIe)
Design FocusTrace width and ground plane distanceTrace spacing and coupling coefficient

Differential pairs offer better noise immunity because the differential signal cancels common-mode noise. For example, USB 3.0 requires with and on a 6-mil FR-4 substrate.

  • Mikrostreifen: Einfacher zu verlegen, strahlt jedoch EMI aus und ist empfindlich gegenüber Verformungen der Leiterplatte.
  • Streifenleitung: Bessere Abschirmung, weniger Übersprechen und stabiler bei hohen Frequenzen, erfordert jedoch innere Schichten.
A higher εr increases the effective permittivity of the transmission line, decreasing Z0. For example:
  • FR-4 (εr = 4.4): Z0 ≈ 50 Ω for W = 10 mils, H = 6 mils
  • Rogers RO3003 (εr = 3.0): Z0 ≈ 58 Ω for the same geometry
Key Dielectric Properties
  • εr: Relative permittivity, affects field confinement.
    • High-frequency materials: εr stability is critical
    • Example: Isola FR408HR: εr = 3.48 @ 10GHz
  • Loss Tangent (Df): Energy loss factor, impacts signal attenuation.
    • FR-4: Df ≈ 0.02 @ 1MHz
    • Rogers RO4350B: Df = 0.004 @ 10GHz
Results are based on IPC-standard approximations. Real-world factors like:
  • Trace roughness (e.g., 2.1μm RMS)
  • Solder mask thickness (0.5-1.0mils)
  • Manufacturing tolerances (±10% for trace width)
  • Dielectric thickness variation (±5%)

Verwandte PCB-Tools

3D visualization of heat conduction from an electronic component to a heatsink showing thermal resistance layers

Wärmewiderstandsrechner

Berechnen Sie den Gesamtwärmedurchlasswiderstand (R-Wert) und den U-Wert für Verbundwandkonstruktionen. Mit Mehrschichtmodellierung und einer Bibliothek mit Materialeigenschaften.

Weiterlesen »
3D illustration of three-phase sine waves and vector diagrams for power and current calculations

Dreiphasen-Rechner

Berechnen Sie Strom (Ampere), Wirkleistung (kW) und Scheinleistung (kVA) für dreiphasige Systeme. Enthält eine Visualisierung des Leistungsdreiecks, Formeln und wichtige

Weiterlesen »
3D technical illustration of a power transformer showing kVA capacity and electrical load calculation

Transformator-kVA-Rechner

Berechnen Sie die kVA-Nennleistungen von Transformatoren für einphasige und dreiphasige Systeme. Enthält Formeln, Schritt-für-Schritt-Anleitungen zur Dimensionierung und praktische Anwendungsbeispiele.

Weiterlesen »
Nach oben scrollen

Instant Quote