Calcolatore di impedenza PCB

Calcola l'impedenza caratteristica e differenziale del PCB per microstriscia e stripline. Supporta coppie accoppiate al bordo con formule precise e diagrammi visivi.

1. Select Trace Type

2. Enter Parameters

mils
mils
mils

 

Microstrip Diagram

WHTεr

Formula

Zo87εr+1.41ln(5.98H0.8W+T)

Stripline Diagram

WBTεr

Formula

Zo60εrln(1.9B0.8W+T)

Edge-Coupled Microstrip Diagram

WHS

Formula

Zdiff2Zo(1-0.347e-2.9SH)

Edge-Coupled Stripline Diagram

WBS

Formula

Zdiff2Zo(1-0.748e-1.5SB)

3. Results

Characteristic Impedance (Zo)-- Ω

Disclaimer: These calculations are for estimation purposes only. For final designs, always use professional simulation software.

Guida all'uso

  1. Seleziona tipo di traccia
    Scegli tra quattro configurazioni di traccia con icone visive:
    • Microstriscia: Traccia singola su strato esterno sopra un piano di massa.
    • Stripline: Traccia incorporata tra due piani di massa.
    • Microstriscia accoppiata al bordo: Coppia differenziale su strato esterno.
    • Stripline accoppiata al bordo: Coppia differenziale incorporata tra piani di massa.
  2. Inserisci parametri
    • Costante dielettrica (εr): Permittività elettrica del materiale (ad esempio, 4,4 per FR-4).
    • Spessore traccia (T): Spessore del rame in mils (1 oz = 1,37 mils).
    • Larghezza traccia (W): Larghezza del conduttore in mils.
    • Altezza substrato (H) / Separazione piano (B): Distanza dal piano (dai piani) di massa.
    • Spaziatura traccia (S): Appare per le coppie differenziali; distanza tra le tracce.
  3. Visualizza risultati
    • Impedenza caratteristica (Zo): Per tracce single-ended.
    • Impedenza differenziale (Zdiff): Per coppie accoppiate, visualizzata automaticamente per i tipi accoppiati al bordo.

Spiegazioni delle formule

Impedenza microstriscia single-ended

Z 0 = 87 ε r + 1.41 ln ( 5.98 H 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of the microstrip line (Ω)
    • Key parameter for single-ended signal integrity
    • Typical target: 50Ω for RF, 60-70Ω for digital signals
  • εr: Substrate dielectric constant
    • FR-4: 4.2-4.6 @ 1MHz
    • Rogers RO3003: 3.0 @ 10GHz
  • H: Substrate height from trace to ground plane (mils)
    • Also known as dielectric height
    • Thinner H increases Z0 for same trace width
  • W: Trace width (mils)
    • Wider traces lower Z0 linearly
    • Minimum width limited by manufacturing (typically ≥4mils)
  • T: Trace thickness (mils)
    • 1oz copper: 1.37mils (35μm)
    • 2oz copper: 2.74mils (70μm)

Impedenza stripline simmetrica

Z 0 = 60 ε r ln ( 1.9 B 0.8 W + T )
Variables:
  • Z0: Characteristic impedance of stripline (Ω)
    • Enclosed between two ground planes for better shielding
    • Typical target: 50Ω for controlled impedance designs
  • εr: Dielectric constant of core material
    • High-frequency materials: εr stability critical
    • Example: Isola FR408HR: εr=3.48 @ 10GHz
  • B: Total distance between ground planes (mils)
    • Also called "plane separation" or "stackup height"
    • B = 2H for symmetric stripline with centered trace
  • W: Trace width (mils)
    • Narrower W increases Z0 in stripline designs
    • Width-to-thickness ratio affects field distribution
  • T: Trace thickness (mils)
    • Thicker traces reduce DC resistance but impact Z0 slightly
    • Considered in denominator for geometric correction

Impedenza differenziale microstriscia accoppiata al bordo

Z diff = 2 Z 0 ( 1 0.347 e 2.9 S H )
Variables:
  • Zdiff: Differential impedance of coupled microstrip (Ω)
    • Typical targets: 100Ω (USB), 90Ω (Ethernet)
    • Depends on both single-ended Z0 and coupling factor
  • Z0: Single-ended microstrip impedance (Ω)
    • Base impedance of each trace in the pair
    • Assumes infinite ground plane for isolation
  • S: Spacing between coupled traces (mils)
    • Critical for crosstalk and differential impedance control
    • S/H ratio determines exponential coupling factor
    • Common rule: S ≥ 2W for minimal crosstalk
  • H: Substrate height (mils)
    • Affects field penetration into substrate
    • Lower H increases electromagnetic coupling between traces

Impedenza differenziale stripline accoppiata al bordo

Z diff = 2 Z 0 ( 1 0.748 e 1.5 S B )
Variables:
  • Zdiff: Differential impedance of coupled stripline (Ω)
    • Preferred for high-speed signals requiring low EMI
    • Typical value: 100Ω for DDR4 differential pairs
  • Z0: Single-ended stripline impedance (Ω)
    • Impedance of each trace when isolated
    • Calculated using symmetric stripline formula
  • S: Spacing between coupled traces (mils)
    • Smaller S increases differential impedance due to coupling
    • Exponential term: e-1.5S/B models field overlap
  • B: Plane separation (mils)
    • Total distance between top and bottom ground planes
    • B = 2H for centered traces in symmetric stackups
    • Larger B reduces coupling effect for same trace spacing

FAQ

Cos'è l'impedenza caratteristica (Z0)?
Characteristic impedance is the resistance a signal "sees" as it travels along a transmission line, determined by trace geometry and material properties. A mismatch in Z0 causes signal reflections, degrading integrity. For example, a microstrip with W = 10 mils, H = 6 mils, and εr = 4.4 has:
Z0 = 87 r + 1.41) · ln( 5.98 · H 0.8 · W + T ) ≈ 50 Ω
  • Microstrip: Single trace on the surface with a ground plane below.
    • Advantages: Easy to route, suitable for low-frequency designs.
    • Disadvantages: Radiates EMI, sensitive to board flexing.
  • Stripline: Trace sandwiched between two ground planes.
    • Advantages: Better EMI shielding, stable at high frequencies.
    • Disadvantages: Requires inner layers, more complex to route.
In edge-coupled pairs, increased spacing S reduces electromagnetic coupling, increasing differential impedance Zdiff. For microstrips:
Zdiff = 2 · Z0 · (1 − 0.347 · e−2.9S/H)
  • When S = H: Zdiff ≈ 2Z0 · 0.76
  • When S = 3H: Zdiff ≈ 2Z0 · 0.97
ParameterSingle-Ended (Z0)Differential (Zdiff)
DefinitionImpedance from trace to groundImpedance between two coupled traces
Typical Values50Ω (RF), 60-70Ω (digital)100Ω (USB), 90Ω (Ethernet)
ApplicationSingle-ended signals (e.g., GPIO)Differential signals (e.g., LVDS, PCIe)
Design FocusTrace width and ground plane distanceTrace spacing and coupling coefficient

Differential pairs offer better noise immunity because the differential signal cancels common-mode noise. For example, USB 3.0 requires with and on a 6-mil FR-4 substrate.

  • Microstriscia: Più facile da instradare, ma irradia EMI ed è sensibile alla flessione della scheda.
  • Stripline: Migliore schermatura, meno diafonia e più stabile alle alte frequenze, ma richiede strati interni.
A higher εr increases the effective permittivity of the transmission line, decreasing Z0. For example:
  • FR-4 (εr = 4.4): Z0 ≈ 50 Ω for W = 10 mils, H = 6 mils
  • Rogers RO3003 (εr = 3.0): Z0 ≈ 58 Ω for the same geometry
Key Dielectric Properties
  • εr: Relative permittivity, affects field confinement.
    • High-frequency materials: εr stability is critical
    • Example: Isola FR408HR: εr = 3.48 @ 10GHz
  • Loss Tangent (Df): Energy loss factor, impacts signal attenuation.
    • FR-4: Df ≈ 0.02 @ 1MHz
    • Rogers RO4350B: Df = 0.004 @ 10GHz
Results are based on IPC-standard approximations. Real-world factors like:
  • Trace roughness (e.g., 2.1μm RMS)
  • Solder mask thickness (0.5-1.0mils)
  • Manufacturing tolerances (±10% for trace width)
  • Dielectric thickness variation (±5%)

Strumenti PCB correlati

Torna in alto

Instant Quote